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Abstract:  We present a divide-and-conquer algo-
rithm for merging k sorted lists, namely, recur-
sively merge the first  lists, do likewise for 
the last  lists, then merge the two results.  We 
get a tight bound for the expense, in comparisons 
made between list elements, of this merge.  We 
show the algorithm is cheapest among all similar 
divide-and-conquer approaches to k-way merging.  
We compute the expense of the k-ary sort, which, 
in analogy to the binary sort, divides its input list 
into k sublists.  Sometimes the k-ary sort has the 
same expense as the binary sort.  Finally we briefly 
consider parallelizing these algorithms.

Introduction

Knuth tells us [10, p. 161] that the merge sort -- 
here we shall call it the binary sort -- was one of the 
first sorting algorithms suggested for computer 
implementation.  There has been continuing 
interest in speeding up the merge operation (for 
instance, Sprugnoli [12], Carlsson [3], Thanh et al. 
[13], Dudzinski and Dydek [5], Brown and Tarjan 
[2], Trabb Pardo [14], Hwang and Lin [9]) and also 
interest in the speed-ups possible through paral-
lelism (Cole [4], Shiloach and Vishkin [11], 
Hirschberg [8], Gavril [7], Even [6]).  In all the 
references listed, the authors have considered the 
case of merging two sorted lists.  In this paper we 
shall study the merging of k ≥ 2 sorted lists.  The 
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topic of k-way merging has been considered 
before, but only lightly and in the context of 
external sorting ([1], [10]).

We present a simple divide-and-conquer algorithm 
for k-way merging.  The algorithm resembles the 
merge sort itself:  first recursively merge the first 

 lists, then do likewise for the last   
lists, and finally merge the two results.  We obtain 
a good tight bound on the number of comparisons 
between list elements made by our divide-and-
conquer k-way merge algorithm.  We show that the 
algorithm does the fewest comparisons among all 
similar divide-and-conquer approaches to k-way 
merging.  We compute the cost (in comparisons) of 
the k-ary sort, which generalizes the binary sort by 
dividing its input list into (not 2 but) k approxi-
mately equal-sized sublists; sometimes the cost of 
the k-ary sort is identical to that of the binary sort.  
Finally we briefly consider parallelizing our algo-
rithms.

In this paper we will always sort lists into 
ascending (versus descending) order.  Lists are 
assumed to be sequentially implemented (versus a 
linked implementation).  The floor  and ceiling 

 functions have their usual meanings:  for a real 
number x,

 = greatest integer i such that i ≤ x,

 = least integer i such that i ≥ x.

“log” will mean base two logarithm log2; a loga-
rithm to some other base b will be explicitly 
subscripted logb.  When measuring the run-times of 
algorithms we will consider worst-case run-times.

The binary sort achieves its good runtime by a 
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divide-and-conquer strategy, namely, that of 
halving the list being sorted:  the front and back 
halves of the list are recursively sorted separately, 
then the two results are merged into the answer list.  
An implementation is

procedure BINARY_SORT(L: in/out List_type);

local  L1, L2: List_type;

begin
if  length(L) > 1  then

L1 := L(1 .. );
L2 := L(  .. n);
BINARY_SORT(L1);
BINARY_SORT(L2);
MERGE(L1, L2, L);

end if;
end;

The procedure MERGE( L1, L2: in List_type; 
L: out List_type ) that we have in mind for sorting 
two lists is described as follows.  Initialize pointers 
to the first item in each list L1, L2, and then

repeat
compare the two items pointed at;
move the smaller into L;
advance the corresponding pointer to the 

smaller's neighbor;
until one of L1,L2 exhausts;
drain the remainder of the unexhausted 

list into L;
The basic operation (BO) we shall be counting to 
obtain the (worst-case) cost of algorithms will be 
that of comparing two list elements.  If the two 
input lists to MERGE have lengths m and n respec-
tively, then MERGE does at most  m + n − 1  BO's 
(the draining does comparisons, but not of list 
elements).  (MERGE does at least min{m, n} 
BO's.)  If  |m − n| ≤ 1 then algorithm MERGE does 
as few BO's as any algorithm for merging two 
sorted lists [Knuth, Theorem 5.3.2−M].

If f(n) = the (worst-case) number of BO's done by 
BINARY_SORT in sorting a list of length n, then f 
satisfies

(1)

(2)

When n is a power of 2, the second equation 
becomes

(2′) f(n) = n − 1 + 2 f(n/2)

which has solution  

f(n) = n log2n  − n +1 , n a power of 2.

The general solution is

for arbitrary integers n ≥ 1.

[1, Ex. 9.12].  In particular, binary sort's runtime is 
O(n log n).

k-way merging

Now let us generalize to an integer k ≥ 2.  Let L be 
a list of n elements.  Divide L into k disjoint contig-
uous sublists L1, L2, ..., Lk of nearly equal length.  
Some Li's (namely, n rem k of them, so possibly 
none) will have length  -- for reasons 
that will become clear later, let these have the low 
indices:  L1, L2, ... .  Other Li's will have length 

, and are to have high indices:  ..., Lk−1, Lk.

We intend to recursively sort the Li's and then 
merge the k results into an answer list.  The 
expense of our k-ary sort is completely determined 
by the cost of merging k sorted lists.  Here are three 
alternative algorithms for merging k sorted lists.  
Note below that we do not assume the source lists 
have approximately equal lengths.

(1)  Linear-Search-Merge:  Find the smallest of k 
items (one from each of the k sorted source lists), at 
a cost of  k−1  BO's.  Move the smallest into the 
answer list and replace it by its neighbor (the next 
largest element) in the source list from which it 
came.  Again there are k items, from among which 
the smallest is to be selected.  (When a list 
exhausts, the last moved item has no replacement, 
so next we find the smallest of fewer than k items.)

(2)  Heap-Merge:  k items (one from each sorted 
source list) are maintained in a heap (under disci-
pline:  root = smallest).  Move the smallest item 
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into the answer list, replace the moved item by its 
neighbor in the source list from which it came, and 
then, with cost  BO's, re-heapify.  (When a 
list exhausts, the last moved item is not replaced, 
and we re-heapify to a heap with fewer than k 
items.)

(3)  Divide-and-Conquer-Merge:  recursively 
merge the first  lists, recursively merge the 
last  lists, then MERGE the two results.  (If  
k = 2  then just MERGE; if  k = 1  then output = 
input.)

We shall show that Divide-and-Conquer-Merge 
performs the fewest BO's among these three alter-
natives for doing k-way merging.

The problem of k-way merging has been studied 
before, in the context of external sorting.  See [1, 
Chapter 11, especially pages 354-355]; also see 
[10, especially section 5.4.1, pages 251-253].  In 
the cited references the authors in passing generally 
assume that Heap-Merge is used to merge k lists 
(we might call them short-ish) stored in central 
memory.  But this is a minor interest to the authors, 
for they are mostly concerned with those problems 
peculiar to extenal sorting, namely, minimizing 
accesses of external memory such as tapes, which 
amounts to the judicious building and arranging of 
"runs" (sets of adjacent records that are in sorted 
order) on k very long tapes.

For external sorting, Heap-Merge is the sensible 
choice and Divide-and-Conquer-Merge is not.  
Heap-Merge makes one sequential pass through 
each of its k source lists; for external sorting this is 
appropriate.  The recursive algorithm Divide-and-
Conquer-Merge revisits its input records; for 
external sorting this has the undesirable effect of 
increasing the number of accesses of external 
memory (and unless tapes can be read backwards, 
also the number of tape rewinds will increase).

Notation: Let n be the sum of the lengths of the k 
source lists. Also, D&C-Merge abbreviates the 
name Divide-and-Conquer-Merge.

When the k source lists all exhaust at nearly the 
same time, Linear-Search-Merge performs slightly 
fewer than  (k−1)n  BO's.  (The exact worst-case 
number of BO's made by Linear-Search-Merge is  
(k−1) (n − k/2),  and it is a pleasant induction argu-
ment on k to show this.)

When the k source lists all exhaust at nearly the 
same time, Heap-Merge performs approximately 

 BO's.

Now we shall show that, if the k lists are presented 
in decreasing order of length, then D&C-Merge 
performs at most 

BO's, which is always ≤  BO's, so about 
half as many BO's as Heap-Merge.  In fairness, the 
actual runtimes of D&C-Merge can be expected to 
approximate and perhaps exceed the runtimes of 
Heap-Merge.  Both have other expenses besides 
BO's and in particular D&C-Merge has recursion 
expenses, though these can be reduced by using a 
stack variable to simulate recursive procedure 
calls.  We shall re-compare Heap-Merge and 
Divide-and-Conquer-Merge in the section on 
parallelism.

Now to bound D&C-Merge's expense.  First we 
need a lemma. Below, function “len” is the length 
function.

Lemma:  Let L1, L2, ..., Lk be lists, where k is odd, 
and suppose

len(L1) ≥ len(L2) ≥ ... ≥ len(Lk).

Denote j =  (which here is (k−1)/2), 

A = len(L1) + len(L2) +  ...  + len(Lj),

B = len(Lj+1) + len(Lj+2) +  ...  + len(Lk),

n = A + B.

Then

(1)  B−A ≤ n/k ,

2 klog
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(2)  B−A  =  n/k  if and only if all the lists have 
the same length,

(3)  A/(k−1)  +  B/(k+1) ≥ n/k, with equality 
holding if and only if all the lists have the same 
length.

Proof:

B−A =  len(Lk) − [len(L1) − len(Lk−1)]
− [len(L2) − len(Lk−2)] − ...  
− [len(Lj) − len(Lj+1)]

≤ len(Lk)
-- since len(Li) − len(Lk−i) ≥ 0, for i ≤ j

≤ n/k
--since the shortest list has length ≤ 

average length.
This gives (1), and implies (2).  Part (3) follows 
from (1) and (2).

Theorem 1:  Let L1, L2, ..., Lk be sorted lists that 
satisfy

len(L1) ≥ len(L2) ≥ ... ≥ len(Lk).

Let  n  be the sum of their lengths.  Then Divide-
and-Conquer-Merge performs at most

(1)  

BO's in merging these lists.

Proof:  The proof is by induction on k.  When k = 
2, formula (1) becomes  n−1,  which is correct for 
the (maximum) number of BO's performed by 
MERGE when it merges two lists whose lengths 
sum to n.  Now assume the desired bound holds 
whenever  h < k  and D&C-Merge merges h lists 
(whose lengths descend).  Denoting j = , we 
note that list set  L1, L2, ..., Lj,  and list set  Lj+1, 
Lj+2, ..., Lk  are also in descending order of length. 
Let

A = the sum of the lengths of the first  lists,
B = the sum of the lengths of the last  lists.

There will be two cases, one of which has two 
subcases. 
Case 1:  k is even.  By induction the number of 
BO's is at most the sum 

+ n − 1

where the first two lines are the costs of recursion 
and the third line is the cost of MERGE. Next using 
the relations

A + B = n,
,

our sum easily simplifies to expression (1). 

Case 2:  k is odd.  Then  =  (k−1)/2,  
= (k+1)/2,  and by induction the number of BO's is 
at most 

+ n − 1

which simplifies to expression *E* = 

+ n − k + 1

Subcase 2.1:  the odd number k is not of the form  
1 + 2p  (for some positive integer p).  Then 

so formula *E* simplifies to  

which is less than or equal to formula (1) of the 
Theorem’s statement if and only if 
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The latter holds by the lemma.

Subcase 2.2:  the odd number k is of the form  1 + 
2p.  Then 

so *E* becomes 

+ n − k + 1

which simplifies to 

which is less than or equal to formula (1) if and 
only if 

that is, if and only if 

which once again the lemma tells us holds.

Notes:  
(1) Examining the above proof and the lemma, 

it follows that if the k lists all have the same length, 
then the worst-case number of BO's performed by 
Divide-and-Conquer-Merge exactly equals

 

(This expression is an integer, since n is a multiple 
of k.)  Thus our bound is tight, in the sense that it is 
achieved, for infinitely many n (namely, all the 
multiples of k).  Of course, the previous sentence is 
true for all k.

(2)  The proof and lemma also show that if the 
k lists do not all have the same length, then the 
theorem's bound is strictly greater than the actual 

worst-case number of BO's that get performed.  
When the lists are of rather disparate 

lengths, the actual worst-case number of BO's 
performed can be considerably less than the 
theorem's bound.  An extreme example is illustra-
tive.  Let k = 3, so that the theorem's bound is (5/
3)n − 2.  If three lists have respective lengths  n−2, 
1, 1  then D&C-Merge groups them as indicated by 
the parenthesization (n−2, (1, 1)) and so will 
perform at most  0 + 1 + (n−1) = n  BO's in merging 
them, not  (5/3) n − 2, so the theorem's bound is 
about 66% too big, for these three lengths.

The preceding paragraph should not cause 
discouragement about the theorem's bound.  The 
theorem is to be thought of as quantified over all 
sets of k lists whose lengths sum to n.  There are 
sets whose lengths are nearly equal (to n/k) and for 
such sets the theorem's bound is quite near the 
actual worst-case number of BO's performed.  For 
example, if k = 9 and n = 9005 (which is halfway 
between two multiples of 9) then for the following 
list lengths (parenthesized to mirror how recursion 
groups the lists),

( ((1001  1001)  (1001  1001))  
((1001  1000)  (1000  (1000  1000))) )

the worst-case number of BO's is actually 29007, 
whereas the theorem's bound is 29008.11.  Since 
costs as we compute them are integers, this same 
example shows that floor-ing expression (1) 
improves the bound but does not in every case 
calculate exactly the worst-case number of BO's 
performed by D&C-Merge.

(3) If k is a power of 2 then the theorem's bound 
simplifies to

n log k − k + 1.

(4) If the k source lists are not initially arranged 
in descending order of length, then a one-time up-
front cost of ≈ k log k will make them so, and the 
remaining cost of merging them is as stated in the 
theorem.  Thus total cost ≈ (n + k) log k, which 
≈ n log k  for typical k and n.
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Optimality of Halving

Our algorithm Divide-and-Conquer-Merge plays 
the divide-and-conquer game by halving the 
number of lists to be merged.  Intuition suggests 
that halving is the best way of dividing up the lists.  
Indeed, this is so, at least in the sense we now 
describe.

Call an algorithm for merging k sorted lists a 
D&CM-Algorithm if it takes the form

if  k = 1  then output = input
elsif  k = 2  then MERGE
else

partition the k lists into subsets, say,  j of 
them,  1 < j < k;

recurse on each of the j subsets;
recurse on the j results;

end if;

An example of partitioning  k = 9  lists into  j = 3  
subsets is given by  ( (L1, L2, L3), (L4, L5, L6, L7), 
(L8, L9) ).  We do not insist that the number  j  of 
subsets is the same on every call.  On the non-
recursive level, what is happening is that such an 
algorithm is doing a sequence of MERGE's, the last 
of which is the MERGE of two lists L*1 and L*2, 
where L*1 (resp., L*2) is obtained from the 
merging of m (resp., k−m) of the k source lists by 
some D&CM-Algorithm.  The next proposition 
shows that partitioning into halves is optimal, when 
merging lists which all have the same length.

Theorem 2:  To merge k sorted lists which all have 
the same length and whose lengths sum to n,  a 
D&CM-Algorithm must do at least

(2)

BO's in the worst-case.

Proof:  We induct on k.  When k = 2, formula (2) 
gives MERGE's familiar bound.  Now assume the 
desired result holds whenever  0 < m < k  and m 
lists all of the same length are merged by a D&CM-
Algorithm.  From the paragraph preceding the 
statement of this theorem (and noting that the 

common list length is n/k), what we must show is 
that the cost of merging m lists, then another k−m 
lists, followed by a trailing MERGE, that is, cost 

+ n − 1

is greater than or equal to formula (2).  After 
simplification, what we must show is that, for any  
m in the set {1, 2, 3, ...,  k−1}, 

By symmetry, it suffices to demonstrate this for any 
m∈ {1, 2, ..., }.  We reason as follows.

For real numbers  x ≥ 1,  define  f(x) = 

.  Function f consists of linear 
pieces; for instance,

on interval  (2p−1, 2p],   f(x) =  p x − 2p,

on interval  (2p, 2p+1],   f(x) =  (p+1) x − 2p+1.

Moreover, since  p2p − 2p equals the limit, as  x  
approaches  2p  from the right, of  (p+1) x − 2p+1,  
we also conclude function f is continuous (in the 
mathematical sense).  Thus the graph of f can be 
described as:  a straight line segment of slope 1, 
connected to a straight line segment of slope 2, 
connected to a straight line segment of slope 3, 
connected to ... and so on.  Consequently, the 
difference between the values of  f  at two consec-
utive integers,  f(m) − f(m−1),  can be calculated as 
soon as we know which interval  (2q−1, 2q]  
contains m, for then the difference f(m) − f(m−1) 
must equal the slope, which is q.

Recall the integer k  of this proposition.  Let  p  be 
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the integer that satisfies  2p < k ≤ 2p+1.  For integers  
m∈ {1, 2, ..., } define  g(m) = f(m) + f(k−m)  
and note that for such m,

m ≤ k/2 ≤ 2p   implies: f(m) − f(m−1) ≤ p,

k−m ≥ k/2 > 2p−1  implies: f(k−m+1)−f(k−m) ≥ p.

Then  g(m−1) − g(m)

=  f(m−1) + f(k−m+1) − f(m) − f(k−m)

=  (f(k−m+1) − f(k−m))  − (f(m) − f(m−1))

≥ p − p  =  0.

That is, g is a decreasing function of its domain {1, 
2, ..., }.  It is straightforward to verify that 
g's least value g( ) equals 

(again there are the three cases:  k even, k odd and 
of form 1 + 2p, k odd but not of form 1 + 2p).  We 
have shown

f(m) + f(k−m) = g(m) ≥  
for all m∈ {1, 2, 3, ..., }.  This was precisely 
our goal.

Note:  Nature is capable of remarkable economies!  
In the notation of the proposition,  k/2∈ (2p−1, 2p],  
and m and k−m lie on either side of k/2.  If  m, 
k−m  both fall into interval (2p−1, 2p] then it is 
easily shown that g(m) = f(m) + f(k−m) will equal 
g's least value g( ).  By the continuity of f, the 
same can be said even if m is the stranded endpoint 
2p−1.

We might express these matters by saying that 
halving is optimal but other partitions can achieve 
equally good results.  For instance: recall the algo-
rithm D&C-Merge = Divide-and-Conquer-Merge 
(the halver).  Let  k = 24  ( = 3 times a power of 2, 
so, halfway between two powers of 2).  If 24 lists 
(of equal length) are partitioned into two subsets, 
the sizes of the subsets are a pair of numbers that 
sum to 24.  Five such pairs are

(8,16),  (9,15),  (10,14),  (11,13),  (12,12).

(D&C-Merge -- the halver -- would use the last 
pair.)  For any one of these five pairs  (m, k−m),  

imagine:  invoking D&C-Merge to merge the 
subset of m lists, invoking D&C-Merge to merge 
the subset of k−m lists, then MERGE-ing the two 
results.  The (worst-case) number of BO's so 
performed must exactly equal the number 
performed when D&C-Merge is called to merge 24 
lists.  That equality must hold follows from this 
note's first paragraph and from examining the prop-
osition's proof.

The k-ary sort

Now let us return to the k-ary sort, which divides its 
unsorted input list into k sublists of nearly equal 
length and makes k recursive calls, followed by a 
call of Divide-and-Conquer-Merge.  If  f(n) =  
worst-case number of BO's performed by the k-ary 
sort when sorting a list of length n, then f satisfies

(1)  f(1) = 0

(2)  f(n) ≤  + n − k + 1

+  (n rem k) f( )  +  (k − (n rem k)) f( )

When n is a power of k, inequality (2) is replaced 
by equality

(2′)  f(n) = 

which has solution

f(n) = nlogkn  − (n/k)logkn  

+ nlogkn − n + 1

as an induction argument (on  n = powers of k) will 
show.

If n is a power of k and k is a power of 2 we get

f(n) =  (nlogkn) log2k − n + 1

      =  nlog2n − n + 1.

Thus, for example, octary sort (k = 8) performs 
exactly the same number of BO's as binary sort 
when sorting lists of length 23m.  On reflection, this 
is not altogether surprising.

In general, the k-ary sort has runtime O(nlog n).
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Parallelism

Heap-Merge does not improve in the presence of 
parallelism (that is, a multiplicity of processing 
units operating simultaneously).  The recurring 
expense in Heap-Merge is re-heapifying, and re-
heapifying is inherently sequential; it cannot be 
parallelized.

On the other hand, Divide-and-Conquer-Merge and 
the k-ary sort can easily be parallelized and thereby 
sped up, which we now briefly investigate.  Using 
more elaborate algorithms, others have achieved 
faster runtimes than we shall.  The algorithm of 
Shiloach and Vishkin in section 4.1 of [11] has 
some outward similarity to our k-ary sort, but their 
sorter is not recursive and uses a different merging 
routine.  Their runtime is O( (n/k) log n ) where k = 
the number of available processors; our runtime 
will be O( (n/log k) log n ).  Cole's very compli-
cated "cascading" merge [4] achieves a runtime of 
O(log n) if there are as many processors as there are 
list elements to be sorted.

So now let us consider the case that there are 16 
lists.  Ultimately, Divide-and-Conquer-Merge's 
behavior is to MERGE these by pairs, MERGE the 
8 results by pairs, MERGE those 4 results by pairs, 
etc.  Obviously the 8 incarnations of MERGE on 
the lowest level can run in parallel, and similarly 
for higher levels.  Actually, we can do even better 
by starting the merging on level m just one tick 
after starting that on level m+1.

Suppose there are 15 processors, arranged in a full 
binary tree, in the sense that output from a child 
processor is input to its parent.  The processors we 
have in mind are quite simple.  Each compares two 
input records from its memory and outputs the 
smaller into its parent's memory; call that unit of 
activity a cycle.  Each of the 8 leaf processors 
begins with input consisting of two sorted lists.  Let 
n be the sum of the lengths of these 16 lists.  On the 
fourth cycle the root outputs for the first time 
(outputting, of course,  the smallest element among 
the 16 lists).  On each succeeding cycle the root 
outputs one more element.  After n+3 cycles the 16 
lists will have been merged.  (One can conceive of 

short-cuts when lists exhaust early, but the worst-
case expense is n+3 cycles.)  A cycle is hardly 
different from a BO as defined earlier.  The expense 
n+3 on the parallel machine should be contrasted 
with the theorem's expense of ≈ n log216  =  4n  on 
a uni-processor machine -- a four-fold speed-up.

Now suppose on our 15-processor machine we 
have to sort a list L of length n. We do so with a 16-
ary sort:

divide the list into sixteenths;
make sixteen recursive calls, one for 

each sixteenth;
merge, using the parallel merge algorithm;

Each recursive call will also perform a 16-way 
merge, so will occupy all 15 processors, therefore 
the 16 recursive calls are to be done sequentially.  
Let f(n) = (worst-case) number of cycles required 
to sort L.  For n's that are powers of 16,

f(1) = 0,

f(n) = n + 3 + 16 f(n/16)

which has solution

f(n) = n log16 n + (n−1)/5

       = (1/4) n log2n + (n−1)/5

or 4 times faster than binary sort on a uni-processor 
machine. For a parallel machine with 2p−1 proces-
sors, the measurements are:  parallel merge 
completes after  n+p−1  cycles; sorting is p times 
faster than on a uni-processor machine.

If there are as many processors as there are list 
elements to be sorted, then sorting can become 
merging where leaf processors start with a pair of 
singleton lists; then sorting completes after n+log n 
cycles.  This scenario is overly generous in its use 
of processors; for instance, after one cycle the leaf-
level processors (half of the total) have no more 
work to do and could be reallocated to elsewhere in 
the tree.



Summary and Conclusion

Our original interest was in the k-ary sort, which is 
the generalization of the binary sort to the case of 
dividing a source list into (not 2 but) k sublists. All 
the essential expense of the k-ary sort comes from 
the merging operation. Thus arose our curiosity 
about ways to do a k-way merging of k sorted lists.

A strategy we named Divide-and-Conquer-Merge 
was presented, a tight bound was found for its 
expense, and it was shown less costly than two 
other strategies for k-way merging (Linear-Search-
Merge, Heap-Merge). Our algorithm Divide-and-
Conquer-Merge, whose scheme is to recurse on 
halves of the numbers of source lists being merged, 
was additionally shown optimal among a class of 
similar approaches that recurse on subgroups of the 
source lists. The expense of the k-ary sort was 
analyzed to be O(n logn); sometimes its expense 
exactly equals that of the binary sort. We briefly 
explored parallel implementations of our merging 
and sorting approaches, and their costs.

We do not expect to see actual use of the k-ary sort, 
since simpler approaches such as the binary sort are 
no costlier. K-way merging may see application. 
The mathematical techniques used in our cost anal-
yses are, to our knowledge, entirely novel and, in 
our opinion, intellectually stimulating and estheti-
cally appealing. As with certain other instances we 
might cite in complexity analysis, the proofs are as 
intriguing as the statements of the theorems.
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