
k-way merging and k-ary sorts

William A. Greene
Computer Science Department

University of New Orleans
New Orleans, LA 70148

wagcs@uno.edu
Abstract: We present a divide-and-conquer algo-
rithm for merging k sorted lists, namely, recur-
sively merge the first lists, do likewise for
the last lists, then merge the two results. We
get a tight bound for the expense, in comparisons
made between list elements, of this merge. We
show the algorithm is cheapest among all similar
divide-and-conquer approaches to k-way merging.
We compute the expense of the k-ary sort, which,
in analogy to the binary sort, divides its input list
into k sublists. Sometimes the k-ary sort has the
same expense as the binary sort. Finally we briefly
consider parallelizing these algorithms.

Introduction

Knuth tells us [10, p. 161] that the merge sort --
here we shall call it the binary sort -- was one of the
first sorting algorithms suggested for computer
implementation. There has been continuing
interest in speeding up the merge operation (for
instance, Sprugnoli [12], Carlsson [3], Thanh et al.
[13], Dudzinski and Dydek [5], Brown and Tarjan
[2], Trabb Pardo [14], Hwang and Lin [9]) and also
interest in the speed-ups possible through paral-
lelism (Cole [4], Shiloach and Vishkin [11],
Hirschberg [8], Gavril [7], Even [6]). In all the
references listed, the authors have considered the
case of merging two sorted lists. In this paper we
shall study the merging of k ≥ 2 sorted lists. The

k 2⁄
k 2⁄
topic of k-way merging has been considered
before, but only lightly and in the context of
external sorting ([1], [10]).

We present a simple divide-and-conquer algorithm
for k-way merging. The algorithm resembles the
merge sort itself: first recursively merge the first

 lists, then do likewise for the last
lists, and finally merge the two results. We obtain
a good tight bound on the number of comparisons
between list elements made by our divide-and-
conquer k-way merge algorithm. We show that the
algorithm does the fewest comparisons among all
similar divide-and-conquer approaches to k-way
merging. We compute the cost (in comparisons) of
the k-ary sort, which generalizes the binary sort by
dividing its input list into (not 2 but) k approxi-
mately equal-sized sublists; sometimes the cost of
the k-ary sort is identical to that of the binary sort.
Finally we briefly consider parallelizing our algo-
rithms.

In this paper we will always sort lists into
ascending (versus descending) order. Lists are
assumed to be sequentially implemented (versus a
linked implementation). The floor and ceiling

 functions have their usual meanings: for a real
number x,

 = greatest integer i such that i ≤ x,

 = least integer i such that i ≥ x.

“log” will mean base two logarithm log2; a loga-
rithm to some other base b will be explicitly
subscripted logb. When measuring the run-times of
algorithms we will consider worst-case run-times.

The binary sort achieves its good runtime by a

k 2⁄ k 2⁄

x
x

x

x

divide-and-conquer strategy, namely, that of
halving the list being sorted: the front and back
halves of the list are recursively sorted separately,
then the two results are merged into the answer list.
An implementation is

procedure BINARY_SORT(L: in/out List_type);

local L1, L2: List_type;

begin
if length(L) > 1 then

L1 := L(1 ..);
L2 := L(.. n);
BINARY_SORT(L1);
BINARY_SORT(L2);
MERGE(L1, L2, L);

end if;
end;

The procedure MERGE(L1, L2: in List_type;
L: out List_type) that we have in mind for sorting
two lists is described as follows. Initialize pointers
to the first item in each list L1, L2, and then

repeat
compare the two items pointed at;
move the smaller into L;
advance the corresponding pointer to the

smaller's neighbor;
until one of L1,L2 exhausts;
drain the remainder of the unexhausted

list into L;
The basic operation (BO) we shall be counting to
obtain the (worst-case) cost of algorithms will be
that of comparing two list elements. If the two
input lists to MERGE have lengths m and n respec-
tively, then MERGE does at most m + n − 1 BO's
(the draining does comparisons, but not of list
elements). (MERGE does at least min{m, n}
BO's.) If |m − n| ≤ 1 then algorithm MERGE does
as few BO's as any algorithm for merging two
sorted lists [Knuth, Theorem 5.3.2−M].

If f(n) = the (worst-case) number of BO's done by
BINARY_SORT in sorting a list of length n, then f
satisfies

(1)

(2)

When n is a power of 2, the second equation
becomes

(2′) f(n) = n − 1 + 2 f(n/2)

which has solution

f(n) = n log2n − n +1 , n a power of 2.

The general solution is

for arbitrary integers n ≥ 1.

[1, Ex. 9.12]. In particular, binary sort's runtime is
O(n log n).

k-way merging

Now let us generalize to an integer k ≥ 2. Let L be
a list of n elements. Divide L into k disjoint contig-
uous sublists L1, L2, ..., Lk of nearly equal length.
Some Li's (namely, n rem k of them, so possibly
none) will have length -- for reasons
that will become clear later, let these have the low
indices: L1, L2, Other Li's will have length

, and are to have high indices: ..., Lk−1, Lk.

We intend to recursively sort the Li's and then
merge the k results into an answer list. The
expense of our k-ary sort is completely determined
by the cost of merging k sorted lists. Here are three
alternative algorithms for merging k sorted lists.
Note below that we do not assume the source lists
have approximately equal lengths.

(1) Linear-Search-Merge: Find the smallest of k
items (one from each of the k sorted source lists), at
a cost of k−1 BO's. Move the smallest into the
answer list and replace it by its neighbor (the next
largest element) in the source list from which it
came. Again there are k items, from among which
the smallest is to be selected. (When a list
exhausts, the last moved item has no replacement,
so next we find the smallest of fewer than k items.)

(2) Heap-Merge: k items (one from each sorted
source list) are maintained in a heap (under disci-
pline: root = smallest). Move the smallest item

n 2⁄
n 2⁄ 1+

f 1() 0=

f n() n 1– f n 2⁄() f n 2⁄()+ +=

f n() n nlog 2 nlog– 1+=

n k⁄ 1+

n k⁄

into the answer list, replace the moved item by its
neighbor in the source list from which it came, and
then, with cost BO's, re-heapify. (When a
list exhausts, the last moved item is not replaced,
and we re-heapify to a heap with fewer than k
items.)

(3) Divide-and-Conquer-Merge: recursively
merge the first lists, recursively merge the
last lists, then MERGE the two results. (If
k = 2 then just MERGE; if k = 1 then output =
input.)

We shall show that Divide-and-Conquer-Merge
performs the fewest BO's among these three alter-
natives for doing k-way merging.

The problem of k-way merging has been studied
before, in the context of external sorting. See [1,
Chapter 11, especially pages 354-355]; also see
[10, especially section 5.4.1, pages 251-253]. In
the cited references the authors in passing generally
assume that Heap-Merge is used to merge k lists
(we might call them short-ish) stored in central
memory. But this is a minor interest to the authors,
for they are mostly concerned with those problems
peculiar to extenal sorting, namely, minimizing
accesses of external memory such as tapes, which
amounts to the judicious building and arranging of
"runs" (sets of adjacent records that are in sorted
order) on k very long tapes.

For external sorting, Heap-Merge is the sensible
choice and Divide-and-Conquer-Merge is not.
Heap-Merge makes one sequential pass through
each of its k source lists; for external sorting this is
appropriate. The recursive algorithm Divide-and-
Conquer-Merge revisits its input records; for
external sorting this has the undesirable effect of
increasing the number of accesses of external
memory (and unless tapes can be read backwards,
also the number of tape rewinds will increase).

Notation: Let n be the sum of the lengths of the k
source lists. Also, D&C-Merge abbreviates the
name Divide-and-Conquer-Merge.

When the k source lists all exhaust at nearly the
same time, Linear-Search-Merge performs slightly
fewer than (k−1)n BO's. (The exact worst-case
number of BO's made by Linear-Search-Merge is
(k−1) (n − k/2), and it is a pleasant induction argu-
ment on k to show this.)

When the k source lists all exhaust at nearly the
same time, Heap-Merge performs approximately

 BO's.

Now we shall show that, if the k lists are presented
in decreasing order of length, then D&C-Merge
performs at most

BO's, which is always ≤ BO's, so about
half as many BO's as Heap-Merge. In fairness, the
actual runtimes of D&C-Merge can be expected to
approximate and perhaps exceed the runtimes of
Heap-Merge. Both have other expenses besides
BO's and in particular D&C-Merge has recursion
expenses, though these can be reduced by using a
stack variable to simulate recursive procedure
calls. We shall re-compare Heap-Merge and
Divide-and-Conquer-Merge in the section on
parallelism.

Now to bound D&C-Merge's expense. First we
need a lemma. Below, function “len” is the length
function.

Lemma: Let L1, L2, ..., Lk be lists, where k is odd,
and suppose

len(L1) ≥ len(L2) ≥ ... ≥ len(Lk).

Denote j = (which here is (k−1)/2),

A = len(L1) + len(L2) + ... + len(Lj),

B = len(Lj+1) + len(Lj+2) + ... + len(Lk),

n = A + B.

Then

(1) B−A ≤ n/k ,

2 klog

k 2⁄
k 2⁄ 2n klog

n klog n k⁄()2 klog– n k– 1+ +

klog

k 2⁄

(2) B−A = n/k if and only if all the lists have
the same length,

(3) A/(k−1) + B/(k+1) ≥ n/k, with equality
holding if and only if all the lists have the same
length.

Proof:

B−A = len(Lk) − [len(L1) − len(Lk−1)]
− [len(L2) − len(Lk−2)] − ...
− [len(Lj) − len(Lj+1)]

≤ len(Lk)
-- since len(Li) − len(Lk−i) ≥ 0, for i ≤ j

≤ n/k
--since the shortest list has length ≤

average length.
This gives (1), and implies (2). Part (3) follows
from (1) and (2).

Theorem 1: Let L1, L2, ..., Lk be sorted lists that
satisfy

len(L1) ≥ len(L2) ≥ ... ≥ len(Lk).

Let n be the sum of their lengths. Then Divide-
and-Conquer-Merge performs at most

(1)

BO's in merging these lists.

Proof: The proof is by induction on k. When k =
2, formula (1) becomes n−1, which is correct for
the (maximum) number of BO's performed by
MERGE when it merges two lists whose lengths
sum to n. Now assume the desired bound holds
whenever h < k and D&C-Merge merges h lists
(whose lengths descend). Denoting j = , we
note that list set L1, L2, ..., Lj, and list set Lj+1,
Lj+2, ..., Lk are also in descending order of length.
Let

A = the sum of the lengths of the first lists,
B = the sum of the lengths of the last lists.

There will be two cases, one of which has two
subcases.
Case 1: k is even. By induction the number of
BO's is at most the sum

+ n − 1

where the first two lines are the costs of recursion
and the third line is the cost of MERGE. Next using
the relations

A + B = n,
,

our sum easily simplifies to expression (1).

Case 2: k is odd. Then = (k−1)/2,
= (k+1)/2, and by induction the number of BO's is
at most

+ n − 1

which simplifies to expression *E* =

+ n − k + 1

Subcase 2.1: the odd number k is not of the form
1 + 2p (for some positive integer p). Then

so formula *E* simplifies to

which is less than or equal to formula (1) of the
Theorem’s statement if and only if

n klog n k⁄()2 klog– n k– 1+ +

k 2⁄

k 2⁄
k 2⁄

A
k
2
---log

A
k 2⁄
---------2 k 2⁄()log– A

k
2
---– 1+ +A

k
2
---log

A
k 2⁄
---------2 k 2⁄()log– A

k
2
---– 1+ +A

k
2
---log

A
k 2⁄
---------2 k 2⁄()log– A

k
2
---– 1+ +A

k
2
---log

A
k 2⁄
---------2 k 2⁄()log– A

k
2
---– 1+ +A

k
2
---log

A
k 2⁄
---------2 k 2⁄()log– A

k
2
---– 1+ +A

k
2
---log

A
k 2⁄
---------2 k 2⁄()log– A

k
2
---– 1+ +

B
k
2
---log

B
k 2⁄---------2 k 2⁄()log– B

k
2
---– 1+ + +

k 2⁄()log klog 1– klog 1–= =

k 2⁄ k 2⁄

A
k 1–

2
-----------log

A
k 1–

2

-----------2

k 1–
2

-----------log
– A

k 1–
2

-----------– 1+ +

B
k 1+

2
------------log

B
k 1+

2

------------2

k 1+
2

------------log
– B

k 1+
2

------------– 1+ + +

A k 1–()log B k 1+()log+

A
k 1–
-----------2 k 1–()log–

B
k 1+
------------2 k 1+()log–

k 1–()log klog k 1+()log= =

n klog n k– 1+ +

A k 1–()⁄ B k 1+()⁄+[] 2 klog–

A k 1–()⁄ B k 1+()⁄+ n k⁄≥

The latter holds by the lemma.

Subcase 2.2: the odd number k is of the form 1 +
2p. Then

so *E* becomes

+ n − k + 1

which simplifies to

which is less than or equal to formula (1) if and
only if

that is, if and only if

which once again the lemma tells us holds.

Notes:
(1) Examining the above proof and the lemma,

it follows that if the k lists all have the same length,
then the worst-case number of BO's performed by
Divide-and-Conquer-Merge exactly equals

(This expression is an integer, since n is a multiple
of k.) Thus our bound is tight, in the sense that it is
achieved, for infinitely many n (namely, all the
multiples of k). Of course, the previous sentence is
true for all k.

(2) The proof and lemma also show that if the
k lists do not all have the same length, then the
theorem's bound is strictly greater than the actual

worst-case number of BO's that get performed.
When the lists are of rather disparate

lengths, the actual worst-case number of BO's
performed can be considerably less than the
theorem's bound. An extreme example is illustra-
tive. Let k = 3, so that the theorem's bound is (5/
3)n − 2. If three lists have respective lengths n−2,
1, 1 then D&C-Merge groups them as indicated by
the parenthesization (n−2, (1, 1)) and so will
perform at most 0 + 1 + (n−1) = n BO's in merging
them, not (5/3) n − 2, so the theorem's bound is
about 66% too big, for these three lengths.

The preceding paragraph should not cause
discouragement about the theorem's bound. The
theorem is to be thought of as quantified over all
sets of k lists whose lengths sum to n. There are
sets whose lengths are nearly equal (to n/k) and for
such sets the theorem's bound is quite near the
actual worst-case number of BO's performed. For
example, if k = 9 and n = 9005 (which is halfway
between two multiples of 9) then for the following
list lengths (parenthesized to mirror how recursion
groups the lists),

(((1001 1001) (1001 1001))
((1001 1000) (1000 (1000 1000))))

the worst-case number of BO's is actually 29007,
whereas the theorem's bound is 29008.11. Since
costs as we compute them are integers, this same
example shows that floor-ing expression (1)
improves the bound but does not in every case
calculate exactly the worst-case number of BO's
performed by D&C-Merge.

(3) If k is a power of 2 then the theorem's bound
simplifies to

n log k − k + 1.

(4) If the k source lists are not initially arranged
in descending order of length, then a one-time up-
front cost of ≈ k log k will make them so, and the
remaining cost of merging them is as stated in the
theorem. Thus total cost ≈ (n + k) log k, which
≈ n log k for typical k and n.

k 1+()log klog 1 k 1–()log+= =

2 k 1–()log k 1–=

2 klog 2 k 1+()log 2 k 1–()= =

A klog 1–() B klog+

A–
B

k 1+
------------2 klog–

n klog n k– 1+ +

2A–
B

k 1+
------------2 k 1–()–

2A
B

k 1+
------------2 k 1–()+

n
k
---2 klog≥ n

k
---2 k 1–()=

A
k 1–

B
k 1+
------------+

n
k
---≥

n klog n k⁄()2 klog– n k– 1+ +

Optimality of Halving

Our algorithm Divide-and-Conquer-Merge plays
the divide-and-conquer game by halving the
number of lists to be merged. Intuition suggests
that halving is the best way of dividing up the lists.
Indeed, this is so, at least in the sense we now
describe.

Call an algorithm for merging k sorted lists a
D&CM-Algorithm if it takes the form

if k = 1 then output = input
elsif k = 2 then MERGE
else

partition the k lists into subsets, say, j of
them, 1 < j < k;

recurse on each of the j subsets;
recurse on the j results;

end if;

An example of partitioning k = 9 lists into j = 3
subsets is given by ((L1, L2, L3), (L4, L5, L6, L7),
(L8, L9)). We do not insist that the number j of
subsets is the same on every call. On the non-
recursive level, what is happening is that such an
algorithm is doing a sequence of MERGE's, the last
of which is the MERGE of two lists L*1 and L*2,
where L*1 (resp., L*2) is obtained from the
merging of m (resp., k−m) of the k source lists by
some D&CM-Algorithm. The next proposition
shows that partitioning into halves is optimal, when
merging lists which all have the same length.

Theorem 2: To merge k sorted lists which all have
the same length and whose lengths sum to n, a
D&CM-Algorithm must do at least

(2)

BO's in the worst-case.

Proof: We induct on k. When k = 2, formula (2)
gives MERGE's familiar bound. Now assume the
desired result holds whenever 0 < m < k and m
lists all of the same length are merged by a D&CM-
Algorithm. From the paragraph preceding the
statement of this theorem (and noting that the

common list length is n/k), what we must show is
that the cost of merging m lists, then another k−m
lists, followed by a trailing MERGE, that is, cost

+ n − 1

is greater than or equal to formula (2). After
simplification, what we must show is that, for any
m in the set {1, 2, 3, ..., k−1},

By symmetry, it suffices to demonstrate this for any
m∈ {1, 2, ..., }. We reason as follows.

For real numbers x ≥ 1, define f(x) =

. Function f consists of linear
pieces; for instance,

on interval (2p−1, 2p], f(x) = p x − 2p,

on interval (2p, 2p+1], f(x) = (p+1) x − 2p+1.

Moreover, since p2p − 2p equals the limit, as x
approaches 2p from the right, of (p+1) x − 2p+1,
we also conclude function f is continuous (in the
mathematical sense). Thus the graph of f can be
described as: a straight line segment of slope 1,
connected to a straight line segment of slope 2,
connected to a straight line segment of slope 3,
connected to ... and so on. Consequently, the
difference between the values of f at two consec-
utive integers, f(m) − f(m−1), can be calculated as
soon as we know which interval (2q−1, 2q]
contains m, for then the difference f(m) − f(m−1)
must equal the slope, which is q.

Recall the integer k of this proposition. Let p be

n klog n k⁄()2 klog– n k– 1+ +

mn
k

------- mlog

mn
k

m
-------------2 mlog–

mn
k

------- m– 1+ +

k m–()n
k

--------------------- k m–()log

k m–()n
k

k m–()
--------------------------2 k m–()log–+

k m–()n
k

--------------------- k m–()– 1+ +

m mlog 2 mlog–

k m–() k m–()log 2 k m–()log–+

k klog 2 klog– k–≥

k 2⁄

x xlog 2 xlog–

the integer that satisfies 2p < k ≤ 2p+1. For integers
m∈ {1, 2, ..., } define g(m) = f(m) + f(k−m)
and note that for such m,

m ≤ k/2 ≤ 2p implies: f(m) − f(m−1) ≤ p,

k−m ≥ k/2 > 2p−1 implies: f(k−m+1)−f(k−m) ≥ p.

Then g(m−1) − g(m)

= f(m−1) + f(k−m+1) − f(m) − f(k−m)

= (f(k−m+1) − f(k−m)) − (f(m) − f(m−1))

≥ p − p = 0.

That is, g is a decreasing function of its domain {1,
2, ..., }. It is straightforward to verify that
g's least value g() equals

(again there are the three cases: k even, k odd and
of form 1 + 2p, k odd but not of form 1 + 2p). We
have shown

f(m) + f(k−m) = g(m) ≥
for all m∈ {1, 2, 3, ..., }. This was precisely
our goal.

Note: Nature is capable of remarkable economies!
In the notation of the proposition, k/2∈ (2p−1, 2p],
and m and k−m lie on either side of k/2. If m,
k−m both fall into interval (2p−1, 2p] then it is
easily shown that g(m) = f(m) + f(k−m) will equal
g's least value g(). By the continuity of f, the
same can be said even if m is the stranded endpoint
2p−1.

We might express these matters by saying that
halving is optimal but other partitions can achieve
equally good results. For instance: recall the algo-
rithm D&C-Merge = Divide-and-Conquer-Merge
(the halver). Let k = 24 (= 3 times a power of 2,
so, halfway between two powers of 2). If 24 lists
(of equal length) are partitioned into two subsets,
the sizes of the subsets are a pair of numbers that
sum to 24. Five such pairs are

(8,16), (9,15), (10,14), (11,13), (12,12).

(D&C-Merge -- the halver -- would use the last
pair.) For any one of these five pairs (m, k−m),

imagine: invoking D&C-Merge to merge the
subset of m lists, invoking D&C-Merge to merge
the subset of k−m lists, then MERGE-ing the two
results. The (worst-case) number of BO's so
performed must exactly equal the number
performed when D&C-Merge is called to merge 24
lists. That equality must hold follows from this
note's first paragraph and from examining the prop-
osition's proof.

The k-ary sort

Now let us return to the k-ary sort, which divides its
unsorted input list into k sublists of nearly equal
length and makes k recursive calls, followed by a
call of Divide-and-Conquer-Merge. If f(n) =
worst-case number of BO's performed by the k-ary
sort when sorting a list of length n, then f satisfies

(1) f(1) = 0

(2) f(n) ≤ + n − k + 1

+ (n rem k) f() + (k − (n rem k)) f()

When n is a power of k, inequality (2) is replaced
by equality

(2′) f(n) =

which has solution

f(n) = nlogkn − (n/k)logkn

+ nlogkn − n + 1

as an induction argument (on n = powers of k) will
show.

If n is a power of k and k is a power of 2 we get

f(n) = (nlogkn) log2k − n + 1

 = nlog2n − n + 1.

Thus, for example, octary sort (k = 8) performs
exactly the same number of BO's as binary sort
when sorting lists of length 23m. On reflection, this
is not altogether surprising.

In general, the k-ary sort has runtime O(nlog n).

k 2⁄

k 2⁄
k 2⁄

k klog 2 klog– k–

k klog 2 klog– k–
k 2⁄

k 2⁄

n klog n k⁄()2 klog–

n k⁄ n k⁄

n klog n k⁄()2 klog– n k– 1 kf n k⁄()+ + +

klog 2 klog

Parallelism

Heap-Merge does not improve in the presence of
parallelism (that is, a multiplicity of processing
units operating simultaneously). The recurring
expense in Heap-Merge is re-heapifying, and re-
heapifying is inherently sequential; it cannot be
parallelized.

On the other hand, Divide-and-Conquer-Merge and
the k-ary sort can easily be parallelized and thereby
sped up, which we now briefly investigate. Using
more elaborate algorithms, others have achieved
faster runtimes than we shall. The algorithm of
Shiloach and Vishkin in section 4.1 of [11] has
some outward similarity to our k-ary sort, but their
sorter is not recursive and uses a different merging
routine. Their runtime is O((n/k) log n) where k =
the number of available processors; our runtime
will be O((n/log k) log n). Cole's very compli-
cated "cascading" merge [4] achieves a runtime of
O(log n) if there are as many processors as there are
list elements to be sorted.

So now let us consider the case that there are 16
lists. Ultimately, Divide-and-Conquer-Merge's
behavior is to MERGE these by pairs, MERGE the
8 results by pairs, MERGE those 4 results by pairs,
etc. Obviously the 8 incarnations of MERGE on
the lowest level can run in parallel, and similarly
for higher levels. Actually, we can do even better
by starting the merging on level m just one tick
after starting that on level m+1.

Suppose there are 15 processors, arranged in a full
binary tree, in the sense that output from a child
processor is input to its parent. The processors we
have in mind are quite simple. Each compares two
input records from its memory and outputs the
smaller into its parent's memory; call that unit of
activity a cycle. Each of the 8 leaf processors
begins with input consisting of two sorted lists. Let
n be the sum of the lengths of these 16 lists. On the
fourth cycle the root outputs for the first time
(outputting, of course, the smallest element among
the 16 lists). On each succeeding cycle the root
outputs one more element. After n+3 cycles the 16
lists will have been merged. (One can conceive of

short-cuts when lists exhaust early, but the worst-
case expense is n+3 cycles.) A cycle is hardly
different from a BO as defined earlier. The expense
n+3 on the parallel machine should be contrasted
with the theorem's expense of ≈ n log216 = 4n on
a uni-processor machine -- a four-fold speed-up.

Now suppose on our 15-processor machine we
have to sort a list L of length n. We do so with a 16-
ary sort:

divide the list into sixteenths;
make sixteen recursive calls, one for

each sixteenth;
merge, using the parallel merge algorithm;

Each recursive call will also perform a 16-way
merge, so will occupy all 15 processors, therefore
the 16 recursive calls are to be done sequentially.
Let f(n) = (worst-case) number of cycles required
to sort L. For n's that are powers of 16,

f(1) = 0,

f(n) = n + 3 + 16 f(n/16)

which has solution

f(n) = n log16 n + (n−1)/5

 = (1/4) n log2n + (n−1)/5

or 4 times faster than binary sort on a uni-processor
machine. For a parallel machine with 2p−1 proces-
sors, the measurements are: parallel merge
completes after n+p−1 cycles; sorting is p times
faster than on a uni-processor machine.

If there are as many processors as there are list
elements to be sorted, then sorting can become
merging where leaf processors start with a pair of
singleton lists; then sorting completes after n+log n
cycles. This scenario is overly generous in its use
of processors; for instance, after one cycle the leaf-
level processors (half of the total) have no more
work to do and could be reallocated to elsewhere in
the tree.

Summary and Conclusion

Our original interest was in the k-ary sort, which is
the generalization of the binary sort to the case of
dividing a source list into (not 2 but) k sublists. All
the essential expense of the k-ary sort comes from
the merging operation. Thus arose our curiosity
about ways to do a k-way merging of k sorted lists.

A strategy we named Divide-and-Conquer-Merge
was presented, a tight bound was found for its
expense, and it was shown less costly than two
other strategies for k-way merging (Linear-Search-
Merge, Heap-Merge). Our algorithm Divide-and-
Conquer-Merge, whose scheme is to recurse on
halves of the numbers of source lists being merged,
was additionally shown optimal among a class of
similar approaches that recurse on subgroups of the
source lists. The expense of the k-ary sort was
analyzed to be O(n logn); sometimes its expense
exactly equals that of the binary sort. We briefly
explored parallel implementations of our merging
and sorting approaches, and their costs.

We do not expect to see actual use of the k-ary sort,
since simpler approaches such as the binary sort are
no costlier. K-way merging may see application.
The mathematical techniques used in our cost anal-
yses are, to our knowledge, entirely novel and, in
our opinion, intellectually stimulating and estheti-
cally appealing. As with certain other instances we
might cite in complexity analysis, the proofs are as
intriguing as the statements of the theorems.

Bibliography

1. Aho, Alfred A., Hopcroft, John E., and Ullman,
Jeffrey D., Data Structures and Algorithms,
Addison-Wesley, Reading, Mass., 1983.

2. Brown, Mark R., and Tarjan, Robert E., "A fast
merging algorithm", J. Assoc. Comput. Mach. 26
(1979), 211-226.

3. Carlsson, Svante, "Splitmerge - a fast stable
merging algorithm", Information Proc. Lett. 22
(1986), 189-192.

4. Cole, Richard, "Parallel merge sort", SIAM J.
Computing 17 (1988), 770-785.

5. Dudzinski, Krzysztof, and Dydek, Andrzej, "On
a stable minimum storage merging algorithm",
Information Proc. Lett. 12 (1981), 5-8.

6. Even, Shimon, "Parallelism in tape-sorting",
Communications Assoc. Comput. Mach. 17 (1974),
202-204.

7. Gavril, Fanica, "Merging with parallel proces-
sors", Communications Assoc. Comput. Mach. 18
(1975), 588-591.

8. Hirschberg, D. S., "Fast parallel sorting algo-
rithms", Communications Assoc. Comput. Mach.
21 (1978), 657-661.

9. Hwang, F. K., and Lin, S., "A simple algorithm
for merging two disjoint linearly ordered sets",
SIAM J. Computing 1 (1972), 31-39.

10. Knuth, Donald E., The Art of Computer
Programming, Vol. 3: Sorting and Searching,
Addison-Wesley, Reading, Mass. 1973.

11. Shiloach, Yossi, and Vishkin, Uzi, "Finding the
maximum, merging, and sorting in a parallel
computation model", J. Algorithms 2 (1981), 88-
102.

12. Sprugnoli, Renzo, "The analysis of a simple in-
place merging algorithm", J. Algorithms 10 (1989),
366-380.

13. Thanh, Mai; Alagar, V. S.; and Bui, T. D.,
"Optimal expected time algorithms for merging", J.
Algorithms 7 (1986), 341-357.

14. Trabb Pardo, Luis, "Stable sorting and merging
with optimal space and time", SIAM J. Computing
6 (1977), 351-372.

	Introduction
	k-way merging
	Optimality of Halving
	The k-ary sort
	Parallelism
	Summary and Conclusion
	Bibliography

